
Hybrid (OpenMP and MPI) Parallelization of MFIX: A
Multiphase CFD Code for Modeling Fluidized Beds

Sreekanth Pannala
Computer Science and
Mathematics Division

Oak Ridge National Laboratory
PO Box 2008, MS 6367
Oak Ridge, TN 37831

001-865-574-3129

pannalas@ornl.gov

Ed D’Azevedo
 Computer Science and
Mathematics Division

Oak Ridge National Laboratory
PO Box 2008, MS 6367
Oak Ridge, TN 37831

001-865-576-7925

dazevedoef@ornl.gov

Madhava Syamlal*
Fluent Inc.

National Energy Technology
Laboratory

3610 Collins Ferry Road
PO Box 880

Morgantown, WV 26507-0880
001-304-285-4685

msyaml@fl.netl.doe.gov

ABSTRACT
We describe the effort and experience in generating a hybrid
parallel version of MFIX (Multiphase Flow with Interphase
eXchanges), a code for modeling reactive multiphase flow in
fluidized beds. The code uses portable OpenMP and MPI in a
unified source code. The resulting parallel code has been ported to
Beowulf Linux clusters, SGI shared memory multiprocessors,
Compaq SC clusters, and an IBM SP. We present hybrid parallel
performance results specifically on the 32-way node of IBM SP.
This experience is relevant, as most modern high-performance
computing (HPC) systems are clusters of SMP nodes.

1. BACKGROUND
Fluidized bed reactors have a long history of application in many
industrial processes, e.g., in the chemical, petroleum,
pharmaceutical, mineral and fossil fuel processing industries.
However, in spite of their wide use, much of the development and
design of fluidized bed units has been empirical due to the
complex nature of the multi-phase flow processes that control
heat, mass, and momentum transport. Current understanding of
these multi-phase processes remains very limited, and direct
experimental measurements are difficult due to the dense and
erosive condition of the flows. When diagnostic tools are
available, there are often major concerns about how the
measurement devices themselves alter the natural dynamics.
Computational tools are being used more extensively to fill the
gap between the available experiments and the actual dynamics of
the fluidized beds. Broadly speaking, there are two different
approaches used for detailed time dependent simulations of 3-D

multi-phase flow problems (for interesting comparisons see [23]):

a) Discrete Element Method (DEM) (also referred to as Eulerian-
Lagrangian treatment)

b) Two-fluids Model (also referred to as Eulerian-Eulerian
Treatment, Continuum model etc.,)

In the DEM, the gas-phase is modeled as in the single-phase using
the traditional Navier-Stokes equations and the discrete phase is
modeled as a collection of particles. These particles either
represent an individual particle or a parcel of particles. The
trajectories of the particles are obtained in a Lagrangian fashion
by solving the Newton's equations of motion where the effects of
collisions are explicitly calculated. Phase interaction terms are
included in both sets of equations. The use of this approach is
very restricted because of the computational cost involved in
tracking millions of particles (e.g. over 300 million particles in
our test problem).

The two-fluid approach is based on the assumption that the
discrete-phase can be described as an inter-penetrating media.
This way the traditional Navier-Stokes framework used for gas-
phase simulations can be used to solve for the effects of the
discrete phase. In this method, a distribution of particles can be
described as multiple phases – each phase representing a range of
particles whose mean corresponds to the value assigned to that
phase. In this paper, we use MFIX – a code based on this multi-
fluid approach. MFIX has been developed at the National Energy

© 2003 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored
by a contractor or affiliate of the [U.S.] Government. As such,
the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.

SAC 2003, Melbourne, Florida, USA
© 2003 ACM 1-58113-624-2/03/03...$5.00

* 4th Author

Thomas O’Brien
National Energy Technology Laboratory
3610 Collins Ferry Road
PO Box 880
Morgantown, WV 26507-0880
001-304-285-4571
thomas.obrien@netl.doe.gov

mailto:pannalas@ornl.gov
mailto:dazevedoef@ornl.gov
mailto:madhava.syamlal@netl.doe.gov
mailto:thomas.obrien@netl.doe.gov

Technology Laboratory (NETL) for over a decade. It is a general-
purpose computer code for describing the hydrodynamics, heat
transfer and chemical reactions in a heavily-loaded, fluid-particle
system. It has been used for describing bubbling, spouted and
circulating fluidized beds. MFIX calculations give transient field
data on the three-dimensional distribution of pressure, velocity,
temperature, and species mass fractions.

Multiphase flows characteristically exhibit a transient behavior,
associated with fluctuations in the local loading [1]. Depending on
the operating regime, these fluctuations are termed “bubbles”,
clusters or strands. In single-phase flow, such fluctuations in
dependent variables would be considered turbulence and many
models have been developed that allow direct calculation of the
time-averaged behavior of such flow. For multiphase flow, such
models are not well developed, although constant progress is
being made [12, 15]. Thus, at the present time, transient
simulations are required to describe heavily-loaded gas-particle
flows. Such calculations are very CPU intensive and may require
days of computation on a fast massively parallel computer.

 This paper reports on the performance of the hybrid parallel
version of MFIX suitable for a distributed memory computing
environment such as a Beowulf Linux cluster or an IBM SP
multiprocessor. Section 2 describes the theoretical and numerical
formulation. Section 3 describes the first stage in generating a
shared memory parallel version using OpenMP compiler
directives. Section 4 describes the enhancements in generating the
distributed memory version. Finally, section 5 presents the results
of a test problem and the performance on an IBM SP4.

2. MFIX THEORY AND NUMERICAL
FORMULATION
MFIX assumes a continuum model of inter-penetrating fluid and
solid phases [3, 10]. It has the following capabilities: mass and
momentum balance equations for gas and multiple solids phases;
gas phase and solids phase energy equations; an arbitrary number
of species balance equations for each of the phases. MFIX
incorporates granular stress equations based on kinetic theory and
soil mechanics. For reactive flows, a user may specify the
chemical reactions using a supplied template. MFIX uses a finite
volume discretization on three-dimensional Cartesian or
cylindrical coordinate systems. The grid is logically rectangular
allowing non-uniform mesh size. Flexible input and boundary
conditions, such as impermeable and semi-permeable internal
surfaces, can be accommodated. The code uses portable OpenMP
and MPI in a unified source code. The code has been ported to
Beowulf Linux clusters; SGI shared memory multiprocessors,
Compaq SC clusters, and IBM SP.

Here is a brief background on the equations being solved in
MFIX. If different phases can be mathematically described as
inter-penetrating continua, two distinct approaches can be used to
derive the multi-phase flow equations: the averaging approach and
the mixture theory approach. In the averaging approach, the
equations are derived by space, time, or ensemble averaging of the
local, instantaneous balances for each of the phases [3, 8, 13, 14].
In the mixture theory approach, equations that are generalizations
of single-phase equations are postulated [5, 6, 18]. Both
approaches yield a similar set of balance equations that must be
closed by specifying several constitutive relations, such as a fluid-
phase equation of state, fluid-solids and solids-solids momentum
transfer and heat transfer, and fluid and solids phase stress tensors.

The principle of material frame-indifference, the second axiom of
thermodynamics, material symmetry, and overall balance
equations for the mixture yield several useful restrictions to
narrow down the choice of the constitutive relations [6].

To proceed further toward solving practical problems, it is
necessary to supply specific constitutive relations. This
challenging task is accomplished by using a variety of approaches,
ranging from empirical information to kinetic theory. Most of the
differences between multi-phase theories originate from such
closure assumptions, which are the subject of much debate. The
governing equations solved in MFIX are based on various sources
(MFIX Theory Guide [22]), but the pervading influence of
Professor Jackson's work [3] is evident.

Using the spatial-averaging approach to derive equations that
describe inter-penetrating continua, the point variables are
averaged over a region that is large compared with the particle
spacing but much smaller than the flow domain. New field
variables, the phasic volume fractions, are introduced to track the
fraction of the averaging volume occupied by various phases.
These volume fractions, which must sum to one, are assumed to
be continuous functions of space and time.

Currently, MFIX uses the implicit backward Euler method for
time discretization and allows several options (including
Superbee, SMART, and upwind) for spatial discretization. At
each time step, MFIX uses Picard fixed point iteration to solve the
set of coupled, highly nonlinear equations that arise from the
discretization of transport and conservation laws. The strong
nonlinearity arises from the intimate coupling between multiple
phases and the strong dependence of the solid pressure on solid
fraction, especially in regions where the solid phase is dense and
tightly packed. The set of nonlinear equations is linearized using
the SIMPLE [19] formulation of fluid/solid velocity correction
and fluid/solid pressure correction. For each component of
velocity and pressure, MFIX solves a system of sparse, non-
symmetric linear equations corresponding to a regular seven-point
stencil on a logically rectangular grid. The interested reader can
consult the MFIX Numerical Guide [21] for more details.

3. SHARED MEMORY
PARALLELIZATION
 A shared memory parallel (SMP) version of MFIX, using
portable OpenMP directives, was developed from the FORTRAN
90 version of MFIX. Profiling information suggested that over
70% of the overall runtime was consumed in the linear solver
routines. The remaining time was spread across many subroutines.
The do-loops of the most time consuming routines were manually
parallelized with OpenMP directives. Some care was required to
appropriately declare local, shared and reduction variables.

 The current base-line version of MFIX supports highly
optimized versions of BICGSTAB or GMRES [4] as linear
solvers. The choices of preconditioners available are: none,
diagonal and line/plane relaxation. These implementations take
advantage of the logically rectangular “I, J, K” data structure.
Matrix-vector multiplies are computed in place and parallelized
by independent dot-products across rows. The performance of
various preconditioners in some numerical experiments of typical
problems has had mixed results – some problems favored one
versus some favored others. Their effectiveness also depends on
the transients in the simulation and can vary with time within any

simulation. The tridiagonal line solves were performed by
LAPACK routine DGTSV [2]. From numerical experiments, our
implementation of BICGSTAB was often faster than GMRES
even though, theoretically, GMRES provides the optimal estimate
and guarantees monotone progress. In most practical devices, the
flow is through narrow, vertical ducts; the coupling is strongest in
this long direction. In either Cartesian or cylindrical coordinates,
this dominant direction is the “J” direction. Since the code uses
line relaxation, the node order was reassigned to be J-fastest, then
I, then K-slowest to increase memory bandwidth by traversing
memory with unit stride. Fortunately, the code consistently uses
an in-line macro FUNIJK, contained in an include file, to map
from “I, J, K” indices to a one dimensional linear array (One-
dimensional linear arrays were originally used to encourage
vectorization.) This reordering was accomplished easily by
modifying the FUNIJK in-line FORTRAN function. In order to
maintain compatibility with post- processors, and to read archived
restart files, routines performing I/O still adhere to the original
order of I-fastest, then J, then K-slowest.

4. DISTRIBUTED MEMORY
PARALLELIZATION
The distributed memory parallel (DMP) version uses domain
decomposition across the “I”, “J”, and “K” dimensions in any
user-specified manner. The MPI communication library is
encapsulated in a suite of FORTRAN 90 modules. These modules
provide high level capabilities such as updating the overlapped
region, array dot product, and array gather/scatter for I/O
operations. The generic interface allows overloading the same
subroutine name and argument list for communicating arrays of
different ranks and types, which greatly minimizes the changes to
the SMP code. All MPI communication is optimized by
precomputing the communication schedule once and then reusing
it. The modules also allow easy reconfiguration for debugging,
serial runs or special optimized settings on the Linux cluster.

 Although one extra ghost layer is normally sufficient for
domain decomposition, the parallel implementation of high order
schemes requires the use of two or more ghost layers. In the
current implementation, two ghost layers are used across all
processors, and a small amount of redundant computation is
performed for the ghost region. MFIX uses a sequential solver
for all the variables and, as one traverses through the solution,
several auxiliary variable arrays have to be computed in order to
obtain the solution of the primitive variables (such as fluid
velocity). By extending the calculations of these
variables/properties to the first and second ghost layers, thus
keeping these values current with the neighboring processor, the
need for communication of these auxiliary variables in various
routines has been eliminated. Thus communication is limited to
the routines updating the primitive variables in the linear solver,
and this reduces the communication costs by a factor of 3 to 4.

 Since the iterative solver is the major computational kernel, we
have attempted to optimize the matrix-vector operation by
overlapping communication with computation in the interior
nodes. However, such overlapping did not result in significant
improvement, perhaps due to poor cache utilization in revisiting
the arrays twice.

5. PARALLEL PERFORMANCE
5.1 Test problem
As a benchmark problem we used the simulation of a circulating
fluidized bed with a square cross-section, corresponding to
experiments conducted by Zhou et al. [24, 25]. The bed has a
square cross-section, 14.6 cm wide, and is 9.14 m in height. The
schematic of this setup is shown in Fig. 1a. The solids inlet and
outlet are of circular cross-section in the experiments but for
geometric simplicity, we have represented them by square cross-
section. The area of the square openings and the mass flow rate
corresponds to that of the experiments. At a gas velocity of 55
cm/s the drag force on the particles is large enough to blow the
particles to the top of the bed and make the bed flow like a fluid
or fluidized bed. The particles strike the top wall and some of
them exit through the outlet while the rest fall down to encounter
the upcoming stream of solids and gases.

Figure 1: Schematic of the simulated CFB.

In the benchmark problem a three-dimensional Cartesian
coordinates system was used. The spanwise directions were
discretized into 60 cells (0.24 cm, I & K-dimensions) and the
axial, streamwise direction into 400 cells (2.29 cm, J-dimension).
The total number of computational cells is around 1.6 million,

including the ghost cells; the dynamic memory required is around
1.6 GB. Three-dimensional domain decomposition was performed
depending on the number of processors for the DMP run. A low-
resolution simulation was also carried out with half the resolution
in each of the three directions for comparison.

In all of the numerical benchmarks reported here for the high-
resolution case, two-different preconditioners were used with
BICGSTAB linear solver. In one case, red-black coloring in the I-
K plane and line-relaxation along J direction was used. With red-
black coloring, the number of BICGSTAB iterations is quite
insensitive to the number of subdomains used. In the other case,
no preconditioner was used. The benchmarks reported here were
carried out on one 32-way node of the machine Cheetah at the
center for Computational Sciences, Oak Ridge National
Laboratory. Cheetah is a 27-node IBM pSeries System, each node
with sixteen Power4 chips, a chip consisting of two 1.3 GHz
Power4 processors. Each processor has a Level 1 instruction
cache of 64 KB and data cache of 32 KB. A Level 2 cache of 1.5
MB on the chip is shared by the two processors, and a Level 3
cache of 32 MB is off-chip. Cheetah's estimated computational
power is 4.5 TeraFLOP/s in the compute partition.

5.2 Numerical Results
Figure 2 compares the axial-profiles of the time-averaged voidage
with the experiments. The voidage is defined as the volume
fraction of the gas in any given cell; a voidage of 1 corresponds to
pure gas and a voidage of 0 corresponds to pure solid (although
this is physically and numerically impossible as the solids go to
random close packing with voidage around 0.4, depending on the
particle size). The results at three different lateral locations match
very well downstream of the inlet region but are not as accurate in
the inlet region (although there is some ambiguity in the precise
inlet geometry from the limited information in the literature [24,
25]). The higher resolution results seem to agree with experiments
better than lower resolution ones near the inlet; even higher
resolution might be required to resolve the relevant scales in this
section. The voidage across the bed (Fig. 3) is predicted well in
the upper quarter of the bed. The solids velocity (Fig. 4) is in
much better agreement in the near-wall regions of the bed while it
is over predicted near the centerline for higher sections in the bed.

Figure 2: Axial profiles of time-averaged voidage fraction.

Figure 3: Lateral profiles of time-averaged voidage fraction.

Figure 4: Axial profiles of time-averaged solids velocity at a
height of 5.13m.

Figure 2: Snapshots of voidage fraction in the Y-Z plane at X
= 1.2 cm for different times: a) 1.12s, b) 2.0s, c) 2.82s, and d)
3.42s. Here red represents low voidage (0.6) and blue
represents high voidage (1.0). Regions of red (low voidage)
have higher concentrations of solids and blue corresponds to
higher concentrations of air.

Table 1: Runtimes (in seconds) for 10 iterations for the case using line relaxation as the preconditioner (bold indicates fastest
runtimes for P processors).

Threads per MPI task
MPI tasks 1 2 4 16 32

1 3198 1680 694 455

2 3208 1569 911 362

4 2000 1121 683

16 504 238

32 239

Table 2: Speedup numbers for the case with line relaxation as preconditioner (bold indicates highest speedup).

Threads per MPI task
MPI tasks

1 2 4 16 32

1 2.0 3.8 9.2 14.1

2 2.0 4.1 7.0 17.7

4 3.2 5.7 9.4

16 12.7 27.0

32 26.9

Figure 5 shows instantaneous void fraction snapshots which show
recirculation of solids in the vessel. The solids are injected at the
base and the high velocity inlet gas carries them to the top (Fig.
5a). The solids accumulate at the bottom. There is also a slight
build-up of solids near the top, due to exit effects. Most
recirculation of solids is in a narrow band close to the walls (Fig.
5b). The solids accumulated on the top fall down and encounter
the upflow at the centerline of bed and tend to move towards the
walls (Fig. 5c). Finally in Fig. 5d, the falling solids are mixed with
the upcoming solids so as to be recirculated to the top. These
figures are shown here as an illustration of the physics that can be
captured using numerical simulations; a more detailed analysis of
this data will be published in another journal.

5.3 Parallel Results
Table 1 shows the execution times of the code on one node of the
IBM SP Cheetah, for ten time steps of the test problem using line
relaxation as the preconditioner. An entry in the table gives the
running time in seconds on P processors, where P is the product of
the number of MPI tasks and the number of threads per task. In all
the runs, message passing was through the internal shared
memory and not over the network. The runtime on a single
processor is not included in the table due to the large problem size
which resulted in an extremely long execution time. The runs
were carried out several times and the best times are recorded
here. The execution times for 8 tasks or 8 threads are not reported
here as the run times varied drastically from one run to another
run and this behavior could not be explained. Further analysis is
required to ascertain the reasons.
Table 1 indicates that for a fixed number of processors, the
execution time of the code is affected by the mix of the number of

MPI tasks and the number of threads per task. For the test
problem on 32 processors, 32 one-thread or 16 two-thread MPI
tasks give the best combination. In general, the simple rule of
“one thread per MPI task, one MPI task per processor” gives the
best performance. This general observation is consistent with
previous hybrid parallelization efforts on somewhat similar
architectures [16, 17]. One of the reasons might be the fact that
thread creation/destruction is very expensive on the IBM SPs.
Replacing the loop-level SMP model with a program-level SMP
model, where the data is decomposed among threads at the
beginning of the program, may incur less overhead.

Figure 6: SMP/DMP Speedup Comparison.

Table 3: Runtimes (in seconds) for 10 iterations for the case with no preconditioner (bold indicates fastest runtimes for P
processors).

Threads per MPI task MPI tasks
1 2 4 16 32

1 2584 1609 593 426

2 2386 1625 1092 337

4 1770 1009 585

16 372 194

32 186

Table 4: Speedup numbers for the case with no preconditioner (bold indicates highest speedup).

Threads Threads -> MPI
Tasks 1 2 4 16 32
1 1.9 3.0 8.1 11.2

2 2.0 2.9 4.4 14.2

4 2.7 4.7 8.2

16 12.8 24.6

32 25.7

Figure 7: Parallel performance for all the cases (Table 2) with
line relaxation as the preconditioner.

Table 2 gives the parallel speedup of the code; the timings in
Table 1 were scaled to give a speedup of 2 on two processors,
each running a single-thread MPI task. Figure 6 compares the
SMP and DMP parallel performance. It clearly shows that the
DMP performance is far better than that of SMP in the extreme
case of hybrid parallelization. Figure 7 captures the essence of the
data given in Table 2. It is very evident that DMP parallelization,
for this problem on this architecture, is desirable.
Table 3 gives the runtimes of the code for the test problem
without the use of preconditioner. This required 124 nonlinear
iterations for ten time steps compared to the 107 iterations when
using the line relaxation preconditioning. However, the code was
20% faster without preconditioning; this may be attributed to the
considerably lower cost of an iteration without preconditioning.
Table 4 translates the execution times into speedups, and the
speedups are graphically depicted in Figures 8 and 9. On close
observation of speedup data, it can be noted that the shared
memory efficiency has dropped further, presumably because the
code must take more iterations to converge than with line
relaxation. This would increase the number of threads
created/destroyed per time-step and explains the poorer
performance of the SMP code.
The code has to be profiled extensively for a range of problems
and also for different architectures before any general conclusions
can be made regarding the advantages of DMP code versus a
hybrid code. In the present case, MPI communication is memory-
to-memory copy as all the processors belong to the same node.
Some of the conclusions might change using node-to-node
communication.

Figure 8: SMP/DMP Speedup Comparison.

Figure 9: Parallel performance for all the cases (Table 4) with
no preconditioner.

5.4 Future development
We have described the performance of a hybrid version of MFIX.
To collect reasonable statistics in flow characteristics, ten
thousand or more time steps are normally required. Even on a fast
parallel machine, a complete run may take several days/weeks of
computation. These numerical experiments suggest further
algorithm development in MFIX and improvement in parallel
performance is still needed in several areas:

• more efficient parallel plane or multigrid like preconditioners
for BICGSTAB

• better adaptive time stepping heuristics coupled to the
nonlinear equation solver as suggested in Gustafsson [11]

• better nonlinear equation solver by Newton-Krylov method
[20] or dynamic primary variable switching technique as
used by Forsyth [9] and Diersch [7] for saturated-unsaturated
flows in groundwater modeling.

 The documentation, technical reports related to MFIX, and the
latest version of MFIX source code are all available from
http://www.mfix.org.

6. ACKNOWLEDGEMENT
The submitted manuscript has been authored by a contractor of
the U.S. Government under Contract No. DE-AC05-00OR22725.
This work was funded by the Department of Energy (DOE) Office
of Industrial Technologies, supported by the program managed by
Dr. Brian Valentine and Dr. Paul Scheihing. The DOE Office of
Fossil Energy provided additional funding. The authors
acknowledge the use of high performance computing facilities at
the Center for Computational Sciences at the Oak Ridge National
Laboratory. The authors would also like to express their thanks to
Aytekin Gel and Mike Prinkey of AEOLUS Research Inc. and
Phil Nicolleti of Parsons (NETL) for their role in the development
of parallel MFIX.

7. REFERENCES:
[1] K. Agrawal, P. Loezos, M. Syamlal, and S. Sundaresan, The

role of meso-scale structures in rapid gas-solid flows, Journal
of Fluid Mechanics, 445 (2001), pp. 151-185.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.
D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, S.
Ostrouchov, and D. Sorensen, LAPACK Users' Guide,
SIAM, second ed., 1995. Online version at
http://www.netlib.org/lapack/lug/lapack lug.html.

[3] T. B. Anderson and R. Jackson, A fluid mechanical
description of fluidized beds, I&EC Fundam., 6 (1967), pp.
527-534.

[4] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, V.
Eijkhout, R. Pozo, C. Romine, and H. van der Vorst,
Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, SIAM Publishing,
Philadelphia, PA, 1994. (a postscript form of this book is
available at www.netlib.org/templates/).

[5] A. Bedford and D. S. Drumheller, Recent advances: Theories
of immiscible and structured mixtures, Int. J. Eng. Sci., 21
(1983), pp. 863-960.

[6] R. M. Bowen, Theory of mixtures, Continuum Physics, Ed.
Eringen, A.C., 3 (1976), pp. 1-127.

[7] H.-J. G. Diersch and P. Perrochet, On the primary variable
switching technique for simulating unsaturated-saturated
flows, Advances in Water Resources, 23 (1999), pp. 271301.

[8] D. A. Drew and L. A. Segel, Averaged equations of two-
phase flow, Stud. Appl. Math., L (1971), pp. 205-231.

[9] P. A. Forsyth, Y. S. Wu, and K. Pruess, Robust numerical
methods for saturated-unsaturated flow with dry initial
conditions in heterogeneous media, Advances in Water
Resources, 18 (1995), pp. 2538.

http://www.mfix.org/

[10] D. Gidaspow, Multiphase Flow and Fluidization -
Continuum and Kinetic Theory Descriptions, Academic
Press, New York, 1994.

[11] K. Gustafsson and G. Soderlind, Control strategies for the
iterative solution of nonlinear equations in ODE solvers,
SIAM Journal on Scientific Computing, 18 (1997), pp. 2340.

[12] C. M. Hrenya and J. L. Sinclair, Effects of particle-phase
turbulence in gas-solids flows, AIChE J, 43 (1997), pp. 853-
869.

[13] M. Ishii, Thermo-Fluid Dynamic Theory of Fluid-Particle
Systems, Eyrolles, Paris, 1975.

[14] D. D. Joseph and T. S. Lundgren, Ensemble averaged and
mixture theory equations for incompressible fluid-particle
suspensions, Int. J. Multiphase Flow, 16 (1990), pp. 35-42.

[15] B. Kashiwa and W. B. Vander Heyden, Toward a general
theory for multi-phase turbulence. Part I: Development and
gauging of the model equations, Tech. Report LA-13773-
MS, Los Alamos National Laboratory, New Mexico, 2000.

[16] F. Mathey, P. Blaise, and P. Kloos, OpenMP optimization of
a parallel MPI CFD code, Second European Workshop on
OpenMP, Murrayfield Conference Centre, Edinburgh,
Scotland, U.K., September 14-15th 2000.

[17] D. A. Mey, and S. Schmidt, From a vector computer to an
SMP-Cluster hybrid parallelization of the CFD code
PANTA, Second European Workshop on OpenMP,
Murrayfield Conference Centre, Edinburgh, Scotland, U.K.,
September 14-15th 2000.

[18] S. L. Passman, J. W. Nunziato, and E. K. Walsh, A theory of
multiphase mixtures, Tech. Rep. SAND 82-2261, Sandia
National Laboratory, New Mexico, 1983.

[19] S. V. Patankar, Numerical Heat Transfer and Fluid Flow,
Hemisphere Series on Computational Methods in Mechanics
and Thermal Science, 1980.

[20] M. Pernice and H. F. Walker, NITSOL: A Newton iterative
solver for nonlinear system, SIAM Journal on Scientific
Computing, 19 (1998), pp. 302-318.

[21] M. Syamlal, MFIX documentation: Numerical technique,
Tech. Rep. DOE/MC31346-5824 (DE98002029),
Morgantown Energy Technology Center, Morgantown, West
Virginia, 1998. {can be downloaded from
http://www.mfix.org}

[22] M. Syamlal, W. Rogers, and T. J. O'Brien, MFIX
documentation: Theory guide, Tech. Rep. DOE/METC-
94/1004 (DE9400087), Morgantown Energy Technology
Center, Morgantown, West Virginia, 1993. {can be
downloaded from http://www.mfix.org}

[23] Y. Tsuji, T. Tanaka, and S. Yonemura, Cluster patterns in
circulating fluidized beds predicted by numerical simulation
(discrete particle model versus two-fluid model), Powder
Technology, 95 (1998), pp. 254-264.

[24] J. Zhou, J. R. Grace, S. Qin, C. M. H. Brereton, C. J. Lim
and J. Zhu, Voidage profiles in a circulating fluidized bed of
square cross-section, Chem. Engg. Science, 49 (1994), pp.
3217-3226.

[25] J. Zhou, J. R. Grace, S. Qin, C. J. Lim and C. M. H.
Brereton, Particle velocity profiles in a circulating fluidized
bed riser of square cross-section, Chem. Engg. Science, 49
(1994), pp. 3217-3226.

	BACKGROUND
	MFIX THEORY AND NUMERICAL FORMULATION
	SHARED MEMORY PARALLELIZATION
	DISTRIBUTED MEMORY PARALLELIZATION
	PARALLEL PERFORMANCE
	Test problem
	Numerical Results
	Parallel Results
	Future development

	ACKNOWLEDGEMENT
	REFERENCES:

